

USCG Fuel Cell Demonstration Project Air Station Cape Cod

Presented to ENERGY 2004

LCDR Chris Lund, P.E. USCG R&D Center

United States Coast Guard Research and Development Center

30 YEARS OF MARITIME RESEARCH & DEVELOPMENT

Fuel Cell Demonstration Project

Overview

- Project Background
- Budget & Schedule
- System Specifications
- Performance to Date
- Project Challenges
- Lessons Learned
- Future Endeavors

Project Goals

Primary Goal:

Meet CG 1997/1998 Energy Objectives:

- Reduce all CG facility energy costs 20% by 2005
- Minimize the use of petroleum fuels...through investments in engineering

Project Goals

Explore Benefits/Feasibility of Fuel Cells

- Grid Independence
- Environmentally Friendlier Power
- High Quality Power
- Reliable Emergency Power
- Cost Effectiveness

Budget

Utilized several grant options including:

- Various USCG programs (\$1.07M)
- DOE Climate Change Program (\$250k)
- Massachusetts Technology Collaborative (\$406k)
- Keyspan Energy (\$100k)
- Total Contract Cost \$1.83 Million

Budget

Cost Breakdown:

- Fuel Cell \$1,250K
- Heat Recovery \$150K
- Engineering/Project Management \$143K
- Site Preparation \$100K
- Installation/Start-up \$66K
- Interconnect \$60K
- Modifications \$66K (Mod. Rate: 4%)

Schedule

Major Project Milestone	Baseline Date	Actual Date	Variance
Start Engineering & Design	04 Oct 2001	04 Oct 2001	None
Design Review Meeting	29 Nov 2001	29 Nov 2001	None
Final Design Complete	13 Dec 2001	18 Apr 2002	126 Days
Commence Site Preparation (slab, piping,	18 Mar 2002	29 Apr 2002	42 Days
etc.)			
Fuel Cell Fabricated, Tested, &	17 Apr 2002	14 Mar 2003	331 Days
Delivered			
Finish Site Preparation	19 Apr 2002	13 Jun 2002	55 Days
Complete Fuel Cell Installation	01 May 2002	14 Mar 2003	318 Days
Startup Fuel Cell	02 May 2002	27 Mar 2003	330 Days
Begin Acceptance Testing	02 May 2002	13 Apr 2003	347 Days
Fuel Cell Accepted & On Line	15 May 2002	16 May 2003	366 Days
Commence First Year of Operation	16 May 2002	17 May 2003	366 Days

System Specifications

Fuel Cell Energy, Inc. DFC 300 MCFC Fuel Cell

Net Power Output /Power at Plant Rating	250 kW/375 kVA	
Voltage	480 VAC 50 or 60 Hz	
Net Electrical Efficiency at Rated Output	47% LHV	
Heat Rate	7,260 Btu/kWh LHV	
Fuel Consumption at Rated Output	32 scfm @ 933 Btu/cf LHV	
Water Uptake	45 gph	
Water Discharge	23 gph	
Available Heat (at rated power)	Approx. 300,000 Btu/hr	

Performance to Date - Hours

June 1, 2003 – May 31, 2004

Total Hours: 8784

Generating Hours: 8449

Stand-by/Shut Down: 335

Operational Availability: 96.1%

Monthly Opavail High: 100%

Monthly Opavail Low: 81%

Performance to Date - Production

June 1, 2003 – May 31, 2004

Total Electrical Production: 1392 MWh

Total Electricity Delivered: 1250 MWh

Highest Monthly Production (May): 128 MWh

Lowest Monthly Production (April): 98.5 MWh

Total Possible Yearly Output: 2190 MWh

Capacity Factor: 0.64

Gas Consumption: 109,480 CCF

Project Challenges

Three Primary Challenges

- Commercial Utility Interconnection
- Manufacturing & Testing Delays
- Lower than Anticipated Loads

Pre-Planning Stage

- Seek out availability of fund sources
- Conduct thorough & accurate feasibility studies
- Plan/budget/contract for first five years of Operation & Maintenance

Feasibility Activities

- Studies should be as long term as possible
- Existing infrastructure vs. New Location
- Inspect adjoining/connecting infrastructure
- Invest in the feasibility studies

Project Team

- Mandate Good Communications
- Good partnerships are key
- Keep the team intact

Project Design & Operations

- For R&D, expect schedules to slip
- Have reasonable expectations
- Change is difficult Training is paramount
- Ancillary equipment important

Utility Concerns

- Fuel cells require several inputs -work with the utilities
- Contact the electrical utility as early as possible
- Make the utility a partner -try to demonstrate how they benefit

Summary

- Extensive interaction with electrical utility is critical
- Complete & accurate data/studies is crucial to success
- Be flexible with new technology/suppliers
- Planning, teamwork, communication

Future Work

- Upgrade the Interconnection
- Maximize Thermal Recovery & Utilization
- Broker Renewable Energy Certificates
- Install Automated Data Acquisition
- Install an Energy Management System

Questions???

LCDR Chris Lund, P.E.
Chief, Assessment Branch
USCG R&D Center
1082 Shennecossett Rd.
Groton, CT 06340
Clund@rdc.uscg.mil